范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文

Python3深度学习库KerasTensorFlow打造自己的聊天机器人

  聊天机器人(ChatRobot)的概念我们并不陌生,也许你曾经在百无聊赖之下和Siri打情骂俏过,亦或是闲暇之余与小爱同学谈笑风生,无论如何,我们都得承认,人工智能已经深入了我们的生活。目前市面上提供三方api的机器人不胜枚举:微软小冰、图灵机器人、腾讯闲聊、青云客机器人等等,只要我们想,就随时可以在app端或者web应用上进行接入。但是,这些应用的底层到底如何实现的?在没有网络接入的情况下,我们能不能像美剧《西部世界》(Westworld)里面描绘的那样,机器人只需要存储在本地的"心智球"就可以和人类沟通交流,如果你不仅仅满足于当一个"调包侠",请跟随我们的旅程,本次我们将首度使用深度学习库Keras/TensorFlow打造属于自己的本地聊天机器人,不依赖任何三方接口与网络。
  首先安装相关依赖: pip3 install Tensorflow pip3 install Keras pip3 install nltk pip3 install pandas
  然后撰写脚本test_bot.py导入需要的库: import nltk import ssl from nltk.stem.lancaster import LancasterStemmer stemmer = LancasterStemmer()  import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation, Dropout from keras.optimizers import SGD import pandas as pd import pickle import random
  这里有一个坑,就是自然语言分析库NLTK会报一个错误: Resource punkt not found
  正常情况下,只要加上一行下载器代码即可 import nltk nltk.download("punkt")
  但是由于学术上网的原因,很难通过python下载器正常下载,所以我们玩一次曲线救国,手动自己下载压缩包: https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/tokenizers/punkt.zip
  解压之后,放在你的用户目录下即可: C:Usersliuyue	okenizers ltk_datapunkt
  ok,言归正传,开发聊天机器人所面对的最主要挑战是对用户输入信息进行分类,以及能够识别人类的正确意图(这个可以用机器学习解决,但是太复杂,我偷懒了,所以用的深度学习Keras)。第二就是怎样保持语境,也就是分析和跟踪上下文,通常情况下,我们不太需要对用户意图进行分类,只需要把用户输入的信息当作聊天机器人问题的答案即可,所这里我们使用Keras深度学习库用于构建分类模型。
  聊天机器人的意向和需要学习的模式都定义在一个简单的变量中。不需要动辄上T的语料库。我们知道如果玩机器人的,手里没有语料库,就会被人嘲笑,但是我们的目标只是为某一个特定的语境建立一个特定聊天机器人。所以分类模型作为小词汇量创建,它仅仅将能够识别为训练提供的一小组模式。
  说白了就是,所谓的机器学习,就是你重复的教机器做某一件或几件正确的事情,在训练中,你不停的演示怎么做是正确的,然后期望机器在学习中能够举一反三,只不过这次我们不教它很多事情,只一件,用来测试它的反应而已,是不是有点像你在家里训练你的宠物狗?只不过狗子可没法和你聊天。
  这里的意向数据变量我就简单举个例子,如果愿意,你可以用语料库对变量进行无限扩充: intents = {"intents": [         {"tag": "打招呼",          "patterns": ["你好", "您好", "请问", "有人吗", "师傅","不好意思","美女","帅哥","靓妹","hi"],          "responses": ["您好", "又是您啊", "吃了么您内","您有事吗"],          "context": [""]         },         {"tag": "告别",          "patterns": ["再见", "拜拜", "88", "回见", "回头见"],          "responses": ["再见", "一路顺风", "下次见", "拜拜了您内"],          "context": [""]         },    ] }
  可以看到,我插入了两个语境标签,打招呼和告别,包括用户输入信息以及机器回应数据。
  在开始分类模型训练之前,我们需要先建立词汇。模式经过处理后建立词汇库。每一个词都会有词干产生通用词根,这将有助于能够匹配更多用户输入的组合。 for intent in intents["intents"]:     for pattern in intent["patterns"]:         # tokenize each word in the sentence         w = nltk.word_tokenize(pattern)         # add to our words list         words.extend(w)         # add to documents in our corpus         documents.append((w, intent["tag"]))         # add to our classes list         if intent["tag"] not in classes:             classes.append(intent["tag"])  words = [stemmer.stem(w.lower()) for w in words if w not in ignore_words] words = sorted(list(set(words)))  classes = sorted(list(set(classes)))  print (len(classes), "语境", classes)  print (len(words), "词数", words)
  输出: 2 语境 ["告别", "打招呼"] 14 词数 ["88", "不好意思", "你好", "再见", "回头见", "回见", "帅哥", "师傅", "您好", "拜拜", "有人吗", "美女", "请问", "靓妹"]
  训练不会根据词汇来分析,因为词汇对于机器来说是没有任何意义的,这也是很多中文分词库所陷入的误区,其实机器并不理解你输入的到底是英文还是中文,我们只需要将单词或者中文转化为包含0/1的数组的词袋。数组长度将等于词汇量大小,当当前模式中的一个单词或词汇位于给定位置时,将设置为1。 # create our training data training = [] # create an empty array for our output output_empty = [0] * len(classes) # training set, bag of words for each sentence for doc in documents:     # initialize our bag of words     bag = []      pattern_words = doc[0]         pattern_words = [stemmer.stem(word.lower()) for word in pattern_words]      for w in words:         bag.append(1) if w in pattern_words else bag.append(0)            output_row = list(output_empty)     output_row[classes.index(doc[1])] = 1          training.append([bag, output_row])  random.shuffle(training) training = np.array(training)  train_x = list(training[:,0]) train_y = list(training[:,1])
  我们开始进行数据训练,模型是用Keras建立的,基于三层。由于数据基数小,分类输出将是多类数组,这将有助于识别编码意图。使用softmax激活来产生多类分类输出(结果返回一个0/1的数组:[1,0,0,...,0]--这个数组可以识别编码意图)。 model = Sequential() model.add(Dense(128, input_shape=(len(train_x[0]),), activation="relu")) model.add(Dropout(0.5)) model.add(Dense(64, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(len(train_y[0]), activation="softmax"))   sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss="categorical_crossentropy", optimizer=sgd, metrics=["accuracy"])   model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
  这块是以200次迭代的方式执行训练,批处理量为5个,因为我的测试数据样本小,所以100次也可以,这不是重点。
  开始训练: 14/14 [==============================] - 0s 32ms/step - loss: 0.7305 - acc: 0.5000 Epoch 2/200 14/14 [==============================] - 0s 391us/step - loss: 0.7458 - acc: 0.4286 Epoch 3/200 14/14 [==============================] - 0s 390us/step - loss: 0.7086 - acc: 0.3571 Epoch 4/200 14/14 [==============================] - 0s 395us/step - loss: 0.6941 - acc: 0.6429 Epoch 5/200 14/14 [==============================] - 0s 426us/step - loss: 0.6358 - acc: 0.7143 Epoch 6/200 14/14 [==============================] - 0s 356us/step - loss: 0.6287 - acc: 0.5714 Epoch 7/200 14/14 [==============================] - 0s 366us/step - loss: 0.6457 - acc: 0.6429 Epoch 8/200 14/14 [==============================] - 0s 899us/step - loss: 0.6336 - acc: 0.6429 Epoch 9/200 14/14 [==============================] - 0s 464us/step - loss: 0.5815 - acc: 0.6429 Epoch 10/200 14/14 [==============================] - 0s 408us/step - loss: 0.5895 - acc: 0.6429 Epoch 11/200 14/14 [==============================] - 0s 548us/step - loss: 0.6050 - acc: 0.6429 Epoch 12/200 14/14 [==============================] - 0s 468us/step - loss: 0.6254 - acc: 0.6429 Epoch 13/200 14/14 [==============================] - 0s 388us/step - loss: 0.4990 - acc: 0.7857 Epoch 14/200 14/14 [==============================] - 0s 392us/step - loss: 0.5880 - acc: 0.7143 Epoch 15/200 14/14 [==============================] - 0s 370us/step - loss: 0.5118 - acc: 0.8571 Epoch 16/200 14/14 [==============================] - 0s 457us/step - loss: 0.5579 - acc: 0.7143 Epoch 17/200 14/14 [==============================] - 0s 432us/step - loss: 0.4535 - acc: 0.7857 Epoch 18/200 14/14 [==============================] - 0s 357us/step - loss: 0.4367 - acc: 0.7857 Epoch 19/200 14/14 [==============================] - 0s 384us/step - loss: 0.4751 - acc: 0.7857 Epoch 20/200 14/14 [==============================] - 0s 346us/step - loss: 0.4404 - acc: 0.9286 Epoch 21/200 14/14 [==============================] - 0s 500us/step - loss: 0.4325 - acc: 0.8571 Epoch 22/200 14/14 [==============================] - 0s 400us/step - loss: 0.4104 - acc: 0.9286 Epoch 23/200 14/14 [==============================] - 0s 738us/step - loss: 0.4296 - acc: 0.7857 Epoch 24/200 14/14 [==============================] - 0s 387us/step - loss: 0.3706 - acc: 0.9286 Epoch 25/200 14/14 [==============================] - 0s 430us/step - loss: 0.4213 - acc: 0.8571 Epoch 26/200 14/14 [==============================] - 0s 351us/step - loss: 0.2867 - acc: 1.0000 Epoch 27/200 14/14 [==============================] - 0s 3ms/step - loss: 0.2903 - acc: 1.0000 Epoch 28/200 14/14 [==============================] - 0s 366us/step - loss: 0.3010 - acc: 0.9286 Epoch 29/200 14/14 [==============================] - 0s 404us/step - loss: 0.2466 - acc: 0.9286 Epoch 30/200 14/14 [==============================] - 0s 428us/step - loss: 0.3035 - acc: 0.7857 Epoch 31/200 14/14 [==============================] - 0s 407us/step - loss: 0.2075 - acc: 1.0000 Epoch 32/200 14/14 [==============================] - 0s 457us/step - loss: 0.2167 - acc: 0.9286 Epoch 33/200 14/14 [==============================] - 0s 613us/step - loss: 0.1266 - acc: 1.0000 Epoch 34/200 14/14 [==============================] - 0s 534us/step - loss: 0.2906 - acc: 0.9286 Epoch 35/200 14/14 [==============================] - 0s 463us/step - loss: 0.2560 - acc: 0.9286 Epoch 36/200 14/14 [==============================] - 0s 500us/step - loss: 0.1686 - acc: 1.0000 Epoch 37/200 14/14 [==============================] - 0s 387us/step - loss: 0.0922 - acc: 1.0000 Epoch 38/200 14/14 [==============================] - 0s 430us/step - loss: 0.1620 - acc: 1.0000 Epoch 39/200 14/14 [==============================] - 0s 371us/step - loss: 0.1104 - acc: 1.0000 Epoch 40/200 14/14 [==============================] - 0s 488us/step - loss: 0.1330 - acc: 1.0000 Epoch 41/200 14/14 [==============================] - 0s 381us/step - loss: 0.1322 - acc: 1.0000 Epoch 42/200 14/14 [==============================] - 0s 462us/step - loss: 0.0575 - acc: 1.0000 Epoch 43/200 14/14 [==============================] - 0s 1ms/step - loss: 0.1137 - acc: 1.0000 Epoch 44/200 14/14 [==============================] - 0s 450us/step - loss: 0.0245 - acc: 1.0000 Epoch 45/200 14/14 [==============================] - 0s 470us/step - loss: 0.1824 - acc: 1.0000 Epoch 46/200 14/14 [==============================] - 0s 444us/step - loss: 0.0822 - acc: 1.0000 Epoch 47/200 14/14 [==============================] - 0s 436us/step - loss: 0.0939 - acc: 1.0000 Epoch 48/200 14/14 [==============================] - 0s 396us/step - loss: 0.0288 - acc: 1.0000 Epoch 49/200 14/14 [==============================] - 0s 580us/step - loss: 0.1367 - acc: 0.9286 Epoch 50/200 14/14 [==============================] - 0s 351us/step - loss: 0.0363 - acc: 1.0000 Epoch 51/200 14/14 [==============================] - 0s 379us/step - loss: 0.0272 - acc: 1.0000 Epoch 52/200 14/14 [==============================] - 0s 358us/step - loss: 0.0712 - acc: 1.0000 Epoch 53/200 14/14 [==============================] - 0s 4ms/step - loss: 0.0426 - acc: 1.0000 Epoch 54/200 14/14 [==============================] - 0s 370us/step - loss: 0.0430 - acc: 1.0000 Epoch 55/200 14/14 [==============================] - 0s 368us/step - loss: 0.0292 - acc: 1.0000 Epoch 56/200 14/14 [==============================] - 0s 494us/step - loss: 0.0777 - acc: 1.0000 Epoch 57/200 14/14 [==============================] - 0s 356us/step - loss: 0.0496 - acc: 1.0000 Epoch 58/200 14/14 [==============================] - 0s 427us/step - loss: 0.1485 - acc: 1.0000 Epoch 59/200 14/14 [==============================] - 0s 381us/step - loss: 0.1006 - acc: 1.0000 Epoch 60/200 14/14 [==============================] - 0s 421us/step - loss: 0.0183 - acc: 1.0000 Epoch 61/200 14/14 [==============================] - 0s 344us/step - loss: 0.0788 - acc: 0.9286 Epoch 62/200 14/14 [==============================] - 0s 529us/step - loss: 0.0176 - acc: 1.0000
  ok,200次之后,现在模型已经训练好了,现在声明一个方法用来进行词袋转换: def clean_up_sentence(sentence):     # tokenize the pattern - split words into array     sentence_words = nltk.word_tokenize(sentence)     # stem each word - create short form for word     sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]     return sentence_words  def bow(sentence, words, show_details=True):     # tokenize the pattern     sentence_words = clean_up_sentence(sentence)     # bag of words - matrix of N words, vocabulary matrix     bag = [0]*len(words)       for s in sentence_words:         for i,w in enumerate(words):             if w == s:                  # assign 1 if current word is in the vocabulary position                 bag[i] = 1                 if show_details:                     print ("found in bag: %s" % w)     return(np.array(bag))
  测试一下,看看是否可以命中词袋: p = bow("你好", words) print (p)
  返回值: found in bag: 你好 [0 0 1 0 0 0 0 0 0 0 0 0 0 0]
  很明显匹配成功,词已入袋。
  在我们打包模型之前,可以使用model.predict函数对用户输入进行分类测试,并根据计算出的概率返回用户意图(可以返回多个意图,根据概率倒序输出): def classify_local(sentence):     ERROR_THRESHOLD = 0.25          # generate probabilities from the model     input_data = pd.DataFrame([bow(sentence, words)], dtype=float, index=["input"])     results = model.predict([input_data])[0]     # filter out predictions below a threshold, and provide intent index     results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD]     # sort by strength of probability     results.sort(key=lambda x: x[1], reverse=True)     return_list = []     for r in results:         return_list.append((classes[r[0]], str(r[1])))     # return tuple of intent and probability          return return_list
  测试一下: print(classify_local("您好"))
  返回值: found in bag: 您好 [("打招呼", "0.999913")] liuyue:mytornado liuyue$
  再测: print(classify_local("88"))
  返回值: found in bag: 88 [("告别", "0.9995449")]
  完美,匹配出打招呼的语境标签,如果愿意,可以多测试几个,完善模型。
  测试完成之后,我们可以将训练好的模型打包,这样每次调用之前就不用训练了: model.save("./v3u.h5")
  这里分类模型会在根目录产出,文件名为v3u.h5,将它保存好,一会儿会用到。
  接下来,我们来搭建一个聊天机器人的API,这里我们使用目前非常火的框架Fastapi,将模型文件放入到项目的目录之后,编写main.py: import random import uvicorn from fastapi import FastAPI app = FastAPI()   def classify_local(sentence):     ERROR_THRESHOLD = 0.25          # generate probabilities from the model     input_data = pd.DataFrame([bow(sentence, words)], dtype=float, index=["input"])     results = model.predict([input_data])[0]     # filter out predictions below a threshold, and provide intent index     results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD]     # sort by strength of probability     results.sort(key=lambda x: x[1], reverse=True)     return_list = []     for r in results:         return_list.append((classes[r[0]], str(r[1])))     # return tuple of intent and probability          return return_list  @app.get("/") async def root(word: str = None):          from keras.models import model_from_json,load_model     model = load_model("./v3u.h5")      wordlist = classify_local(word)     a = ""     for intent in intents["intents"]:         if intent["tag"] == wordlist[0][0]:             a = random.choice(intent["responses"])        return {"message":a}  if __name__ == "__main__":     uvicorn.run(app, host="127.0.0.1", port=8000)
  这里的: from keras.models import model_from_json,load_model     model = load_model("./v3u.h5")
  用来导入刚才训练好的模型库,随后启动服务: uvicorn main:app --reload
  效果是这样的:
  结语:毫无疑问,科技改变生活,聊天机器人可以让我们没有佳人相伴的情况下,也可以听闻莺啼燕语,相信不久的将来,笑语盈盈、衣香鬓影的"机械姬"亦能伴吾等于清风明月之下。

解放军最新布局渤海军演到底为什么?解放军围岛围台行动,按理说应该结束了,但是到目前为止还没有收到任何消息。相反,今天上午,演习不但没有结束,反而力度还在继续的往前推进,加强。与此同时,收到的另外一个消息就是八月八日韩国移民怎样能移民韩国?最新的韩国移民政策在欧美国家移民政策紧缩的当前,随着韩国国际经济地位的提升,韩国移民受到了国内投资移民人士的广泛关注。如今越来越多的人选择移民各个国家,韩国也不失为一个可以移民的好国家。近几年韩国经无锡十大冷门景点,人少景美好玩无锡,简称锡,是长三角的中心城市之一,也是江苏重要的旅游城市,自古就是鱼米之乡,成为江南非常有魅力的城市。数千年的历史,数千年的文化底蕴,留下了许多人文古迹,是江南文明的重要发源地蔡英文麾下台军靠绘制图解实现抗中保台?坚称解放军未进入台所谓领空领海台湾媒体报道,蔡英文当局防务部门负责人邱国正曾经放出过狂言,大言不惭警告称,解放军越接近台湾本岛,台军的反制力就越强。蔡英文当局防务部门负责人邱国正。可现如今,解放军的封岛演习已持菲律宾计划从台湾撤侨,外国投资却步台湾,郭台铭表示非常愤怒文纪硕鸣台海紧张局势因佩洛西访台升级,传菲律宾政府研究撤侨计划。外商投资却步台湾,郭台铭气的大骂。台海虽暂无战事,负面效应则不断浮现。有媒体报导,解放军围台军演,两军战舰台海中线相弱者愤怒抽刀向更弱者对于美国社会屡现袭击亚裔人士尤其是亚裔老人事件,究其原因就是美国社会存在的种群鄙视链,白人歧视黑人,黑人再歧视甚至将一股怨气发泄到比他们更弱小的亚裔人身上。这种丑陋现象运用鲁迅先生青山碧水间看总书记的绿色之约大国之治,山河为基。2022年是党的二十大召开之年实施十四五规划的关键之年。回望上半年,习近平总书记多次深入基层考察调研,行程万里初心如磐,从长远性布局于关键处落子,亲身践行绿色之相亲鄙视链男,身高170,月薪6000,对女方要求只有10点众所周知,相亲也存在鄙视链,不要以为空有上进心斗志,就能拿捏住家境优越的白富美。基本来说,本地人瞧不上外地上,城市户口看不上农村户口,三环以内经济自由不找五环小洋楼985只找985老婆发来一张吃饭的照片,我看完就选择离婚!网友太细心了有没有人懂得这样的情况可以实现吗有这样黏人的小妖精你怎么还能学习得下去呢带女朋友回家她好像很高兴的样子这刀工也就是兰州牛肉面馆入门的水平罢了老婆发来一张吃饭的照片,我看完就选择离婚台湾的投机分子开始慌了,绿营作家苦苓对蔡英文发出灵魂十问台湾岛内的社会阵营中除了国民党和民进党的铁杆支持者之外,还有很多的投机分子。这些人常常左右摇摆,首鼠两端,眼中只有利益而没有基本的立场。他们广泛存在于台湾的媒体界娱乐界与文化界之中斗破苍穹萧炎什么时候能得到声波斗技?萧炎服用了七品丹药阴阳玄龙丹后成功地继承了其中的龙气,而现在只要能获得一部声波斗技就能充分展示出这份龙气的威力。那萧炎何时才能得到声波斗技,又是如何得到的呢?其实,萧炎来到迦南学院
湛江市的区划变动,广东省的重要城市,9个区县是怎么来的?在之前的文章中给大家说了很多城市的区划变迁沿革,每个城市的区划变迁沿革都是独一无二的,因为我国的历史悠久,悠久的历史,让我国经历的政权也比较多,而在每个政权执政期间,当时中华民族的各地陆续公布2022年成绩单,GDP两万亿城市已增至7个近日,各地官方陆续公布了2022年经济成绩单。1月7日上午,苏州市十七届人大二次会议召开。今年的苏州市政府工作报告显示,2022年苏州地区生产总值预计达2。4万亿元,今年的经济增长下降城市继续增多一线城市释放回暖信号年末楼市翘尾未现1月16日,国家统计局发布10月份70个大中城市商品住宅销售价格变动情况,各线城市商品住宅销售价格环比持平或下降,一线城市同比上涨二三线城市同比下降。从数据表现来看,12月楼市跌幅青岛出发自驾游攻略推荐旅行是一种追寻,尽可能地去更多的地方,寻找不一样的新鲜与感动旅行是一种分享。下面跟随小编一起去看看吧!春风十里,不如景区有你,赶紧行动吧!一银沙滩海滩第一天小编开了一上午的车,我们NBL全明星赛河北唐山举行新华社石家庄1月15日电(记者杨帆)15日晚,2022赛季全国男子篮球联赛(NBL)全明星赛在河北唐山新体育中心举行。北区明星队以169147战胜南区明星队,北区明星队杨文学获得最中超4消息泰山打包大连双星,国安外援离队,郭田雨申请归队媒体人杜立言在个人社媒透露孙国文离队几成定局。纯净康冰转发消息并写道准备欢迎童磊,孙国文,双飞翼驰骋山东。大连人本赛季在主教练谢晖的带领下,取得了相当不错的成绩,压着打的谢晖也成为无球可踢新帅难产!2023国足前景不妙,足协没钱又没人,陷入2难时间过得很快,转眼间2023年的1月已经过去了一半,如今距离亚洲杯的开幕已经仅剩下了半年时间。目前,亚洲各国的国家队都在积极为2023年的亚洲杯积极备战。东南亚的球队正在参加东南亚总决赛轰53分,曾当选CBA得分王!超级外援昆西杜比,如今去哪了说起CBA外援,这么多年以来,配得上超级二字的真不少。还在打的比如马尚布鲁克斯,加入广东男篮的第一年便成功带队夺冠。退役的如马布里,北京队昔日核心,球队一切体系都是围绕着他在进行运13代ESCPU比正式版还强?999元频率4。8G核显32EU价格便宜引发混乱粉丝们都打算过年了吧,老魔还在折腾一台OC3的蜂鸟IPRO的7。5L机箱的小电脑。顺便把13400ES的评测,重做下细节分享,简单公布下配置CPU13400ESQO0PS6C12T