使用JAX实现完整的VisionTransformer
本文将展示如何使用JAX/Flax实现Vision Transformer (ViT),以及如何使用JAX/Flax训练ViT。Vision Transformer
在实现Vision Transformer时,首先要记住这张图。
以下是论文描述的ViT执行过程。
从输入图像中提取补丁图像,并将其转换为平面向量。
投影到 Transformer Encoder 来处理的维度
预先添加一个可学习的嵌入([class]标记),并添加一个位置嵌入。
由 Transformer Encoder 进行编码处理
使用[class]令牌作为输出,输入到MLP进行分类。细节实现
下面,我们将使用JAX/Flax创建每个模块。
1、图像到展平的图像补丁
下面的代码从输入图像中提取图像补丁。这个过程通过卷积来实现,内核大小为patch_size * patch_size, stride为patch_size * patch_size,以避免重复。class Patches(nn.Module): patch_size: int embed_dim: int def setup(self): self.conv = nn.Conv( features=self.embed_dim, kernel_size=(self.patch_size, self.patch_size), strides=(self.patch_size, self.patch_size), padding="VALID" ) def __call__(self, images): patches = self.conv(images) b, h, w, c = patches.shape patches = jnp.reshape(patches, (b, h*w, c)) return patches
2和3、对展平补丁块的线性投影/添加[CLS]标记/位置嵌入
Transformer Encoder 对所有层使用相同的尺寸大小hidden_dim。上面创建的补丁块向量被投影到hidden_dim维度向量上。与BERT一样,有一个CLS令牌被添加到序列的开头,还增加了一个可学习的位置嵌入来保存位置信息。class PatchEncoder(nn.Module): hidden_dim: int @nn.compact def __call__(self, x): assert x.ndim == 3 n, seq_len, _ = x.shape # Hidden dim x = nn.Dense(self.hidden_dim)(x) # Add cls token cls = self.param("cls_token", nn.initializers.zeros, (1, 1, self.hidden_dim)) cls = jnp.tile(cls, (n, 1, 1)) x = jnp.concatenate([cls, x], axis=1) # Add position embedding pos_embed = self.param( "position_embedding", nn.initializers.normal(stddev=0.02), # From BERT (1, seq_len + 1, self.hidden_dim) ) return x + pos_embed
4、Transformer encoder
如上图所示,编码器由多头自注意(MSA)和MLP交替层组成。Norm层 (LN)在MSA和MLP块之前,残差连接在块之后。class TransformerEncoder(nn.Module): embed_dim: int hidden_dim: int n_heads: int drop_p: float mlp_dim: int def setup(self): self.mha = MultiHeadSelfAttention(self.hidden_dim, self.n_heads, self.drop_p) self.mlp = MLP(self.mlp_dim, self.drop_p) self.layer_norm = nn.LayerNorm(epsilon=1e-6) def __call__(self, inputs, train=True): # Attention Block x = self.layer_norm(inputs) x = self.mha(x, train) x = inputs + x # MLP block y = self.layer_norm(x) y = self.mlp(y, train) return x + y
MLP是一个两层网络。激活函数是GELU。本文将Dropout应用于Dense层之后。class MLP(nn.Module): mlp_dim: int drop_p: float out_dim: Optional[int] = None @nn.compact def __call__(self, inputs, train=True): actual_out_dim = inputs.shape[-1] if self.out_dim is None else self.out_dim x = nn.Dense(features=self.mlp_dim)(inputs) x = nn.gelu(x) x = nn.Dropout(rate=self.drop_p, deterministic=not train)(x) x = nn.Dense(features=actual_out_dim)(x) x = nn.Dropout(rate=self.drop_p, deterministic=not train)(x) return x
多头自注意(MSA)
qkv的形式应为[B, N, T, D],如Single Head中计算权重和注意力后,应输出回原维度[B, T, C=N*D]。class MultiHeadSelfAttention(nn.Module): hidden_dim: int n_heads: int drop_p: float def setup(self): self.q_net = nn.Dense(self.hidden_dim) self.k_net = nn.Dense(self.hidden_dim) self.v_net = nn.Dense(self.hidden_dim) self.proj_net = nn.Dense(self.hidden_dim) self.att_drop = nn.Dropout(self.drop_p) self.proj_drop = nn.Dropout(self.drop_p) def __call__(self, x, train=True): B, T, C = x.shape # batch_size, seq_length, hidden_dim N, D = self.n_heads, C // self.n_heads # num_heads, head_dim q = self.q_net(x).reshape(B, T, N, D).transpose(0, 2, 1, 3) # (B, N, T, D) k = self.k_net(x).reshape(B, T, N, D).transpose(0, 2, 1, 3) v = self.v_net(x).reshape(B, T, N, D).transpose(0, 2, 1, 3) # weights (B, N, T, T) weights = jnp.matmul(q, jnp.swapaxes(k, -2, -1)) / math.sqrt(D) normalized_weights = nn.softmax(weights, axis=-1) # attention (B, N, T, D) attention = jnp.matmul(normalized_weights, v) attention = self.att_drop(attention, deterministic=not train) # gather heads attention = attention.transpose(0, 2, 1, 3).reshape(B, T, N*D) # project out = self.proj_drop(self.proj_net(attention), deterministic=not train) return out
5、使用CLS嵌入进行分类
最后MLP头(分类头)。class ViT(nn.Module): patch_size: int embed_dim: int hidden_dim: int n_heads: int drop_p: float num_layers: int mlp_dim: int num_classes: int def setup(self): self.patch_extracter = Patches(self.patch_size, self.embed_dim) self.patch_encoder = PatchEncoder(self.hidden_dim) self.dropout = nn.Dropout(self.drop_p) self.transformer_encoder = TransformerEncoder(self.embed_dim, self.hidden_dim, self.n_heads, self.drop_p, self.mlp_dim) self.cls_head = nn.Dense(features=self.num_classes) def __call__(self, x, train=True): x = self.patch_extracter(x) x = self.patch_encoder(x) x = self.dropout(x, deterministic=not train) for i in range(self.num_layers): x = self.transformer_encoder(x, train) # MLP head x = x[:, 0] # [CLS] token x = self.cls_head(x) return x使用JAX/Flax训练
现在已经创建了模型,下面就是使用JAX/Flax来训练。
数据集
这里我们直接使用 torchvision的CIFAR10.
首先是一些工具函数def image_to_numpy(img): img = np.array(img, dtype=np.float32) img = (img / 255. - DATA_MEANS) / DATA_STD return img def numpy_collate(batch): if isinstance(batch[0], np.ndarray): return np.stack(batch) elif isinstance(batch[0], (tuple, list)): transposed = zip(*batch) return [numpy_collate(samples) for samples in transposed] else: return np.array(batch)
然后是训练和测试的dataloadertest_transform = image_to_numpy train_transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomResizedCrop((IMAGE_SIZE, IMAGE_SIZE), scale=CROP_SCALES, ratio=CROP_RATIO), image_to_numpy ]) # Validation set should not use the augmentation. train_dataset = CIFAR10("data", train=True, transform=train_transform, download=True) val_dataset = CIFAR10("data", train=True, transform=test_transform, download=True) train_set, _ = torch.utils.data.random_split(train_dataset, [45000, 5000], generator=torch.Generator().manual_seed(SEED)) _, val_set = torch.utils.data.random_split(val_dataset, [45000, 5000], generator=torch.Generator().manual_seed(SEED)) test_set = CIFAR10("data", train=False, transform=test_transform, download=True) train_loader = torch.utils.data.DataLoader( train_set, batch_size=BATCH_SIZE, shuffle=True, drop_last=True, num_workers=2, persistent_workers=True, collate_fn=numpy_collate, ) val_loader = torch.utils.data.DataLoader( val_set, batch_size=BATCH_SIZE, shuffle=False, drop_last=False, num_workers=2, persistent_workers=True, collate_fn=numpy_collate, ) test_loader = torch.utils.data.DataLoader( test_set, batch_size=BATCH_SIZE, shuffle=False, drop_last=False, num_workers=2, persistent_workers=True, collate_fn=numpy_collate, )
初始化模型
初始化ViT模型def initialize_model( seed=42, patch_size=16, embed_dim=192, hidden_dim=192, n_heads=3, drop_p=0.1, num_layers=12, mlp_dim=768, num_classes=10 ): main_rng = jax.random.PRNGKey(seed) x = jnp.ones(shape=(5, 32, 32, 3)) # ViT model = ViT( patch_size=patch_size, embed_dim=embed_dim, hidden_dim=hidden_dim, n_heads=n_heads, drop_p=drop_p, num_layers=num_layers, mlp_dim=mlp_dim, num_classes=num_classes ) main_rng, init_rng, drop_rng = random.split(main_rng, 3) params = model.init({"params": init_rng, "dropout": drop_rng}, x, train=True)["params"] return model, params, main_rng vit_model, vit_params, vit_rng = initialize_model()
创建TrainState
在Flax中常见的模式是创建管理训练的状态的类,包括轮次、优化器状态和模型参数等等。还可以通过在apply_fn中指定apply_fn来减少学习循环中的函数参数列表,apply_fn对应于模型的前向传播。def create_train_state( model, params, learning_rate ): optimizer = optax.adam(learning_rate) return train_state.TrainState.create( apply_fn=model.apply, tx=optimizer, params=params ) state = create_train_state(vit_model, vit_params, 3e-4)
循环训练def train_model(train_loader, val_loader, state, rng, num_epochs=100): best_eval = 0.0 for epoch_idx in tqdm(range(1, num_epochs + 1)): state, rng = train_epoch(train_loader, epoch_idx, state, rng) if epoch_idx % 1 == 0: eval_acc = eval_model(val_loader, state, rng) logger.add_scalar("val/acc", eval_acc, global_step=epoch_idx) if eval_acc >= best_eval: best_eval = eval_acc save_model(state, step=epoch_idx) logger.flush() # Evaluate after training test_acc = eval_model(test_loader, state, rng) print(f"test_acc: {test_acc}") def train_epoch(train_loader, epoch_idx, state, rng): metrics = defaultdict(list) for batch in tqdm(train_loader, desc="Training", leave=False): state, rng, loss, acc = train_step(state, rng, batch) metrics["loss"].append(loss) metrics["acc"].append(acc) for key in metrics.keys(): arg_val = np.stack(jax.device_get(metrics[key])).mean() logger.add_scalar("train/" + key, arg_val, global_step=epoch_idx) print(f"[epoch {epoch_idx}] {key}: {arg_val}") return state, rng
验证def eval_model(data_loader, state, rng): # Test model on all images of a data loader and return avg loss correct_class, count = 0, 0 for batch in data_loader: rng, acc = eval_step(state, rng, batch) correct_class += acc * batch[0].shape[0] count += batch[0].shape[0] eval_acc = (correct_class / count).item() return eval_acc
训练步骤
在train_step中定义损失函数,计算模型参数的梯度,并根据梯度更新参数;在value_and_gradients方法中,计算状态的梯度。在apply_gradients中,更新TrainState。交叉熵损失是通过apply_fn(与model.apply相同)计算logits来计算的,apply_fn是在创建TrainState时指定的。@jax.jit def train_step(state, rng, batch): loss_fn = lambda params: calculate_loss(params, state, rng, batch, train=True) # Get loss, gradients for loss, and other outputs of loss function (loss, (acc, rng)), grads = jax.value_and_grad(loss_fn, has_aux=True)(state.params) # Update parameters and batch statistics state = state.apply_gradients(grads=grads) return state, rng, loss, acc
计算损失def calculate_loss(params, state, rng, batch, train): imgs, labels = batch rng, drop_rng = random.split(rng) logits = state.apply_fn({"params": params}, imgs, train=train, rngs={"dropout": drop_rng}) loss = optax.softmax_cross_entropy_with_integer_labels(logits=logits, labels=labels).mean() acc = (logits.argmax(axis=-1) == labels).mean() return loss, (acc, rng)结果
训练结果如下所示。在Colab pro的标准GPU上,训练时间约为1.5小时。
test_acc: 0.7704000473022461
作者:satojkovic
顾炎武为什么能提出天下兴亡,匹夫有责天下兴亡,匹夫有责,这句爱国名言可谓家喻户晓影响深远,其源于明末清初著名思想家顾炎武的日知录正始。这句话言简意赅地指出个人应对国家兴亡承担责任,对激发中华儿女的爱国精神和责任意识发
房地产曙光已现,关键在于软着陆展望2023告别三高,进入分化时代。文中国企业家记者李艳艳编辑周春林头图摄影曾靖郁亮说,曙光已现。2022年12月16日的万科临时股东大会上,万科董事局主席郁亮现身。他谈到行业变化,称时隔20
警惕大面积的复阳重现现象再次发生虽然此轮疫情经过近一个月的大面积扩散,大部分市民都已经经历了第一次阳性过程,保守估计已有90以上人员都已杨过了。可以说这次几乎无一幸免,都未能逃过此劫,这次传染速度如此之快,是大家
海软近百年办校擦亮党建品牌全校大思政格局逐渐形成新海南客户端南海网南国都市报1月6日消息(记者苏桂除)1月5日,海南软件职业技术学院(以下简称海软)党委副书记刘明鹏教授做客新海南客户端校长在线访谈,就建校百年历史的海软在教育教学
百年一遇!美国国会瘫痪了作者丨吴斌编辑丨和佳图源丨新华社2023年刚开始,美国民众就无奈地迎来一场众议院议长难产的百年一遇闹剧。美东时间1月4日,深陷领导权乱斗的美国众议院又三次拒绝了共和党人麦卡锡(Ke
母乳喂养好处多,更利于神经发育,宝妈要知道镜子随着宝宝的出生,孩子带给我们的快乐是语无伦次的。可是有的宝妈由于各种不同原因在母乳还是奶粉喂养上纠结。其实,母乳的优势是毋庸置疑的,他们不但能够给宝宝带来更强的免疫力更充沛的营
7岁孩子成语量特别大,只因妈妈教得好,学成语真不难!小孩子学习成语,自有价值和意义。成语虽然只是短短的几个字,却含有一个故事,一个道理,一段引申含义。小孩子学会成语,能提升语言表达力感染力,提升文化修养。同时,还能丰富写作素材词汇,
童书,知道怎么办2022年读过的童书,特别喜欢的就有卧底机器人,我叫小朵,我是如假包换100的人类。你该不会信了吧?其实我是一个高科技机器人。你千万不要泄露这个秘密,轻而易举,激起我的期待,一页一
儿戲儿戏,在大人语境中视为办事轻率不认真不负责任。但在儿童世界,那是全身心很认真快乐无比的事情。从儿戏里,孩子们获得了怎样的快乐,学到了怎样的处人之道,可能并像大人想像的那样简单。儿戏
一起读绘本DiaryofaWorm引言此文旨在协助家长在家陪孩子一起读英文绘本。会陆续上传50本初级绘本的图文讲解,收集在一起读绘本的合集里,便于查阅。DiaryofaWorm蚯蚓的日记Myreportcard。我
孕妇如果长期咳嗽不止,原来还能吃这种水果!最近关于如何止咳的话题真的频上热搜,特别是孕妇咳嗽剧烈就更尴尬小编作为一个孕妇在阳了之后也是感同深受,连续多日的咳嗽打喷嚏导致漏尿肚子发紧,哪怕是在自己老公面前都觉得特别尴尬甚至还